ATC's Role in Functional Recovery

ICC/CALBO Seismic Roundtable Sacramento, California April 30, 2019

Jon A. Heintz

Executive Director

Applied Technology Council

Outline

- Applied Technology Council overview and organization
- Past projects of significance
- New release relevant to functional recovery
- Take-aways and a call to action

Overview and Organization

- Created by engineers for engineers
- 501(c)(3) Non-profit Corporation
- Board of Directors develops policy
 - SEAOC, SEAoNY, NCSEA, ASCE, WCSEA,Others appointed
- Mission

To develop and promote state-of-the-art, user-friendly engineering resources and applications for use in mitigating the effects of natural and other hazards on the built environment

Mission

Save the world one book at a time...

Project Delivery Model

- Technical Staff direct projects, prepare reports
- Technical Consultants conduct project work
 - Structural engineers from diverse firms, researchers from various institutions
- Products non-proprietary, objective, reflect a broad spectrum of engineering opinion

Technology Development Continuum

Past Projects of Significance

45-year history, more than 300 reports

 ATC-3-06: Tentative Provisions for Seismic Regulations for Buildings

 ATC-14: Evaluating the Seismic Resistance of Existing Buildings

 ATC-33 (FEMA 273): Guidelines for Seismic Rehabilitation

 Basis for seismic design in the building code and ASCE reference standards

ATC "Scotch Tape"

 Even if you don't know who ATC is or what ATC stands for...

- ATC-20: Postearthquake Safety
 Evaluation of Buildings
- Basis for inspection and posting of buildings after damaging events

New Release

 ATC-58 Project on Next-Generation Performance-Based Seismic Design

- FEMA P-58 Seismic
 Performance Assessment of Buildings, Methodology and Implementation (2018)
- New technology that creates an opportunity for moving resilience concepts forward

FEMA P-58 Context

Regional/Community

Scale

What we design today is the resilience we will provide tomorrow

Next-Generation Performance Metrics

- Probable consequences and explicit consideration of uncertainty
 - Casualties
 - Repair costs
 - Repair time
 - Unsafe placarding
 - Environmental Impacts

Early Performance Statements

SEAOC Blue Book:

- Resist minor earthquakes without damage
- Resist moderate earthquakes with some nonstructural damage
- Resists major earthquakes with structural/nonstructural damage
- Resist the most severe earthquakes without collapse

Early Performance Statements

- 1988 NEHRP Provisions:
 - Minimize hazard to life
 - Increase expected performance of higher occupancy structures
 - Improve functional capability of essential facilities
 - (2009) Minimize repair costs,
 where practical to do so

Recent Performance Statements

- FEMA P-695 (2009):
 - 10% Probability of collapse given
 MCE shaking intensity
- ASCE 7-10 Commentary
 - Quantitative structural reliability criteria based on FEMA P-695
- ASCE 7-16 Provisions
 - PBSD must meet reliability criteria specified in the standard

Future Performance Statements

- Performance needs have been evolving beyond life safety
- Some performance statements in building codes have been intentionally aspirational (inserted before we knew how to calculate)
- FEMA P-58 performance metrics provide a quantitative link to the future

Next-Generation Assessment Process

FEMA P-58-5

- FEMA P-58 assessment of code-conforming buildings was needed to:
 - Benchmark current capability using FEMA P-58 metrics
 - Identify factors that contribute to performance
 - Provide a technical basis for development of performance objectives and design guidance

Archetype Design Space

- 5 systems
- 2 occupancies
- 2 risk categories
- Low-, mid-, and high-rise variants
- 3 hazard levels
- 1,755 total

Table 2-9 Summary of Archetypes by Occupancy, System, Risk Category, and Building Height

Occupancy	Seismic Force- Resisting System	Risk Category	2-Story	3-Story	5-Story	12-Story
Office (975 archetypes)	Steel SMRF (195 archetypes)	III		•		
		IV		į.		
	RC SMRF (195 archetypes)	<u>II</u>			(=)	
		IV				
	Steel BRBF (195 archetypes)	II	1=1		1	
		IV				
	Steel SCBF (195 archetypes)	II	7 🔳			•
		IV				
	Special RCSW (195 archetypes)	П				
		IV	(=)		(=)	
	Steel SMRF (1 56 archetypes)	II		•		
Healthcare (780 archetypes)		IV		•		
	RC SMRF (1 56 archetypes)	<u>tt</u>				
		IV				
	Steel BRBF (1 56 archetypes)	II	î m î		i 🖃 i	
		IV	1=1		1=1	
	Steel SCBF (156 archetypes)	IÏ				
		IV	(1)		(=)	
	Special RCSW (156 archetypes)	Ш			∮ ■ 3	
		IV				

Summary Findings

- Performance is NOT uniform across systems
- You CAN control performance with design
- Strength and stiffness are key
- Risk Category IV design criteria improve performance

Expected Code Performance

Table 6-1 Generalized Performance Expectations for Code-Conforming Buildings

	Performance Expectation						
Performance Measure	Design EQ	MCE					
Risk Category II – Healthcare (Medical Office Building or Laboratory)							
Repair Cost	20%	40%					
Repair Time	60 days	180 days					
Casualty Rate	1.0%	2.0%					
Probability of Unsafe Placard	20%	40%					
Repairability	85%	65%					
Risk Category IV – Healthcare (Hospital)							
Repair Cost	10%	20%					
Repair Time	45 days	100 days					
Casualty Rate	0.5%	1.5%					
Probability of Unsafe Placard	10%	25%					
Repairability	95%	85%					

Use in Future Code Performance Objectives

- FEMA P-58-5 now provides quantitative information for conversations to:
 - Determine acceptable performance
 - Determine appropriate performance targets
 - Consider necessary levels of confidence
 - Consider relative system performance
 - Define functional performance
 - Design buildings to achieve function

Another Take-Away

- Good seismic design is based on stable, ductile performance
- Ductility is damage
- Code-conforming buildings will experience damage
- There is a disconnect between current seismic design paradigms and resilience concepts

Damage

Consequences

What can we do?

- Before performance-based design, engineers made decisions on behalf of society
 - Codes were made safe because we knew people wanted safety
- It is now obvious that society wants resilience (in some form)
 - We need to create a code that offers a functional performance objective for buildings and infrastructure

Thank you!