2015 GROUP A PROPOSED CHANGES TO THE I-CODES MEMPHIS COMMITTEE ACTION HEARINGS

April 19–28, 2015
Memphis Cook Convention Center
Memphis, Tennessee
SWIMMING POOL AND SPA CODE COMMITTEE

Edward Kulik, Chair
Chief Building Official
City of Goodyear
Goodyear, AZ

Donald Leas, Vice Chair
Rep: Association of Pool & Spa Professionals
Consultant
United States Of America Diving
Mayport, PA

Jeffrey H. Anderson
Residential Combination Inspector
Chesterfield County Building Inspections
Chesterfield, VA

Steve Barnes, CPO
Rep: Association of Pool & Spa Professionals
Director of Science and Compliance
AquaStar Pool Products, Inc.
Maricopa, AZ

Larry W. Brock
Building Inspector III
Chesterfield County
Chesterfield, VA

Joseph R. Crum, CBO
Building Official
City of Winter Springs Florida
Winter Springs, FL

Dale Engebretson, MCP
Rep: Village of Hampshire, IL
Building Official
B&F Construction Code Services
Elgin, IL

Bruce Grogg
Rep: Association of Pool & Spa Professionals
CEO/President
Pool Cover Specialists National, Inc.
West Jordan, UT

Lee Hovis
Rep: World Waterpark Association
Director of Operations and Recreation
Tolomato Community Development District
Ponte Vedra, FL

Dan Johnson, CBP
Rep: Association of Pool & Spa Professionals
Owner/President
Swim Incorporated
Sarasota, FL

Jasen Kunz, MPH
Environmental Health Officer
Centers for Disease Control and Prevention
Atlanta, GA

Eugene “Gene” Novak, Jr., CBO
Rep: Metro West Building Officials of MA
District State Building Inspector
Commonwealth of Massachusetts
Framingham, MA

Darris Ritenour
Owner
Uncle D’s Pools & Spas LLC
Luray, VA

Rick Root
President
World Waterpark Association
Overland Park, KS

Shajee Siddiqui
Rep: Association of Pool & Spa Professionals
Director, Global Product Safety & Compliance
Zodiac Pool Systems, Inc.
Vista, CA

Staff Secretariat:
Fred Grable, PE
Senior Staff Engineer - Plumbing
International Code Council
Central Regional Office
Country Club Hills, IL
The following is the tentative order in which the proposed changes to the code will be discussed at the public hearings. Proposed changes which impact the same subject have been grouped to permit consideration in consecutive changes.

Proposed change numbers that are indented are those which are being heard out of numerical order. Indentation does not necessarily indicate that one change is related to another. Proposed changes may be grouped for purposes of discussion at the hearing at the discretion of the chair. Note that some SP code change proposals may not be included on this list, as they are being heard by another committee.

SP1-15
SP2-15
SP3-15
SP4-15
SP5-15
SP6-15
SP7-15
SP8-15
SP9-15
SP10-15
SP11-15
SP12-15
SP13-15
SP14-15
SP15-15
SP16-15
SP17-15
SP18-15
SP19-15
SP20-15
SP21-15
SP22-15
SP23-15
SP24-15
SP25-15
SP26-15
SP27-15
SP28-15
SP29-15
SP30-15
SP32-15
 SP31-15
SP33-15
2015 International Swimming Pool and Spa Code

Add new text as follows:

101.3.1 Flotation tanks. Flotation tank systems intended for sensory deprivation therapy shall not be considered to be included in the scope of this code.

Reason: Per the scope of the ISPSC, the provisions of this code are intended to address aquatic recreation facilities, pools and spas...that are intended for swimming, bathing or wading. A flotation tank system is not intended for swimming, bathing or wading; rather, it is intended for sensory deprivation therapy and should not be included under the ISPSC. This proposal attempts to clarify this by providing intent that they are not under the scope of this code.

Cost Impact: Will increase the cost of construction
This proposal attempt to clarify that a product is not under the scope of the ISPSC and therefore will not increase the cost of construction.
2015 International Swimming Pool and Spa Code

Add new definition as follows:

SECTION 202 DEFINITIONS

ACCESS (TO). That which enables a fixture, appliance or equipment to be reached by ready access or by a means that first requires the removal or movement of a panel, door similar obstruction (see “Ready access”).

SECTION 202 DEFINITIONS

READY ACCESS. That which enables a fixture, appliance or equipment to be directly reached without requiring the removal or movement of any panel, door or similar obstruction and without the use of a portable ladder, step stool or similar device.

Reason: There are several locations where these terms are used in the ISPSC however, without these definitions, the true meaning of the terms are not clear. These definitions are identical to the IMC definitions for these terms. The IMC has scoping control of these defined terms where they are used in all codes except for the IRC.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 108.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2025 International Swimming Pool and Spa Code

Revised as follows:

SECTION 202 DEFINITIONS

SHALLOW AREAS. Portions of a pool or spa with water depths less than 4 feet (1219 mm).

Reason: This proposal resolves a conflict between the definition of SHALLOW AREA and what is stated as a shallow area in Section 807.2. The change was made in the conservative direction.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 12.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

SECTION 202 DEFINITIONS

SWIMOUT. An underwater seat area that is placed completely outside of the perimeter shape of a pool. Where located at the deep end, swimouts are permitted to be used as the deep-end means of entry or exit to the pool.

Reason: A swimout is not required to be outside of the perimeter shape of a pool. Many times they are located on those areas but they are not required to be. This revised wording agrees with Figure 322.2. The second sentence is a requirement and requirements should not be in code definitions. Requirements belong in the code text (Chapters 3 through 10). There was no need to add this requirement to the code as it is already in Sections 411.1.3 and 809.2.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 13.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
SECTION 202 DEFINITIONS

UNDERWATER LEDGE. A narrow shelf projecting from the side of a vertical structure whose dimensions are defined in the appropriate standard.

Reason: The phrase UNDERWATER LEDGE is only used in the definition of UNDERWATER SEAT and nowhere else in the code. There is no need for this definition as it is clear by the description of UNDERWATER SEAT. This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 40.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

302.6 Waste water discharge. Where wastewater from pools or spas, such as backwash water from filters and water from deck drains discharge to the building drainage system, the connection shall be through an air gap in accordance with the International Plumbing Code or the International Residential Code, as applicable in accordance with Section 102.7.1.

Reason: This simple rewording clarifies the intent that water being discharged to a building drainage system must do so through an air gap. It is paramount that sewage not come in contact with water systems around a pool or spa.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 105.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
303.1.3 Covers. Outdoor heated pools and outdoor permanent spas shall be provided with a vapor-retardant cover or other approved vapor-retardant means in accordance with Section 104.11.

Exception: Where more than 70 percent of the energy for heating, computed over an operating season, is from site-recovered energy such as from a heat pump or solar energy source, covers or other vapor-retardant means shall not be required.

Reason: The original intent of this exception was that when an air-source swimming pool heat pump was installed on a pool or spa, it would not require a vapor retardant cover. Because an air-source swimming pool heat pump transfers heat from the air to the pool, it is a more energy efficient way to heat a pool over other types of heaters. The language included the term site-recovered energy without the knowledge that this term is defined in ASHRAE 90.1 and as defined would not include air-source swimming pool heat pumps. If this exception were to be interpreted to require a heat pump that uses site-recovered energy, as defined in ASHRAE 90.1, then one would find that such a product does not exist in the swimming pool industry. Therefore, this proposal eliminates that terminology to clarify that the intent here is if a pool or permanent spa utilizes a heat pump or solar energy source for more than 70% of the energy used in heating the pool or permanent spa, than one is exempt from the vapor retardant cover requirement.

Cost Impact: Will not increase the cost of construction.

This change will not increase the cost of construction; rather, it will clarify the original intent of this section.
2015 International Swimming Pool and Spa Code

Revise as follows:

305.1 General. The provisions of this section shall apply to the design of barriers for restricting entry into areas having for pools and spas. These design controls are intended to provide protection against the potential drowning and near-drowning by restricting access to such pools and spas. These requirements provide an integrated level of protection against potential drowning through the use of physical barriers and warning devices. Where spas or hot tubs are equipped with a lockable safety cover complying with ASTM F 1346 and swimming pools are equipped with a powered safety cover that complies with ASTM F 1346, the areas where those spas, hot tubs or pools are located shall not be required to comply with Sections 305.2 through 305.7.

Exceptions:
1. Spas and hot tubs with a lockable safety cover that complies with ASTM F 1346.
2. Swimming pools with a powered safety cover that complies with ASTM F 1346.

Reason: The last two sentences in the existing section appear to be commentary so they should be removed. The exceptions really don’t fit correctly because the main paragraph does not have requirements that the exceptions work with.

The proposed revised language better identifies what Section 305 is about which is the design of barriers for restricting entry into areas having pools and spas. The new last sentence simply says, where a pool or spa has a safety cover, compliance with the remainder of the section is not required. No new requirements are being presented by this proposal.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 41.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Add new text as follows:

305.2.4.1 Setback for mesh fences. The location of a mesh fence from the inside of the fence to the nearest edge of the water of a pool or spa shall be not less than 20 inches (508 mm).

Delete without substitution:

305.2.10 Poolside barrier setbacks. The pool or spa side of the required barrier shall be not less than 20 inches (508 mm) from the water's edge.

Reason: This proposal clarifies the original intent of Section 305.2.10, which was to apply only to mesh fences, which are removable child barriers otherwise known as baby barriers. The setback requirement was never intended to apply to walls, screen enclosures, other types of fencing, etc. The way the code is currently written it could be construed as applying to all types of barriers and not just the mesh fencing as intended. Therefore, this proposal simply deletes Section 305.2.10 and instead places the setback requirement as a subsection of the mesh fencing section, so it is applied to only that type of barrier fence.

Bibliography: See 2007 Florida Building Code, Code Commentary for Section R4101.17.1.13 which clearly provides that the intent of the setback is only for mesh fencing.

Cost Impact: Will not increase the cost of construction

This will not increase the cost of construction, as it simply clarifies the original intent of a code provision.
2015 International Swimming Pool and Spa Code

Add new text as follows:

305.2.10 Flexible plastic netting

Flexible plastic mesh fencing and netting shall not be used for a required barrier. This section shall not apply to factory-manufactured mesh fence assemblies made and installed in accordance with Section 305.2.4.

Reason: This new section is being proposed to clarify that certain plastic fencing is not intended for use as a pool barrier. For example, the plastic fencing one uses at construction sites to warn people to stay out of the area could possibly be argued as meeting the barrier provisions if this new section is not added. This is possible due to the fact the vertical post spacing could be 15 to 20 feet, the "holes" could meet the width maximum and the top edge is supported by a tension wire. However, the "holes" could be widened by a foot being inserted and weight on the top could pull it down to less than 48 inches above grade. Further, the bottom of this type of fence rarely is supported by a tension wire; therefore, it could be possible for someone to push under it and get into the pool. All of these factors represent a safety concern if this type of product were used to meet the barrier requirements, which is why this new section is needed to prevent that from happening. However, the second sentence is needed to clarify this is NOT intended to eliminate the mesh fencing that is manufactured specifically as a "baby barrier" around a pool, under Section 305.2.4.

Cost Impact: Will not increase the cost of construction.

This will not increase the cost of construction, as it just clarifies that a certain type of plastic netting that was never intended to be a pool barrier and is not, in fact, a pool barrier.
305.3 Gates. Access gates shall comply with the requirements of Sections 305.3.1 through 305.3.3 and shall be equipped to accommodate a locking device. Pedestrian access gates shall open outward away from the pool or spa, shall be self-closing and shall have a self-latching device.

Where the combined occupant load of the pool deck area and the pool water area is calculated to be 50 persons or more based on the swimming pool occupant load factors in Table 1004.1.2 of the International Building Code, not less than two pedestrian access gates shall serve as the means of egress gates for the combined area. The means of egress gates shall be separated in accordance with Section 1007.1.1 of the IBC. Where more than one means of egress gate from the area is required, all means of egress gates from the area shall have panic hardware installed in accordance with Section 1010.1.10 of the IBC.

Reason: This proposed change is to add language that would require checking the occupant load using IBC Table 1004.1.2 which has pool and pool deck listed as a function of space. Once the space exceeds the 49 it would need exits which would match what is done for a building or space within a building. There has been confusion as to how exterior pools are treated in regards to means of egress since they are not technically an occupancy. I do not believe the best way to solve this is to change language to call these spaces occupancies since you would then have to also use Chapter 29 to determine required numbers of plumbing fixtures. I believe some building departments use IBC section 1004.5 for these outdoor areas but this section says you need means of egress but the definition of means of egress only talks to occupied portions of buildings or structures.

This leads to a lot of confusion for building departments and designers. I feel that adding this specific language to the swimming pool barrier section will help clear up this confusion.

Cost Impact: Will increase the cost of construction
This would increase the cost in the jurisdictions that have not interpreted this section to require the panic hardware already.
2015 International Swimming Pool and Spa Code

Revise as follows:

305.3 Gates. Access gates shall comply with the requirements of Sections 305.3.1 through 305.3.3 and shall be equipped to accommodate a locking device. Pedestrian access gates shall open outward away from the pool or spa, shall be self-closing and shall have a self-latching device.

305.3.3 Latches. For residential pools, the operable parts of the latch release for the self-latching device shall be located at 54 inches (1372 mm) maximum above the finished floor or ground. Where the latch release mechanism of the self-latching device is located less than 54 inches (1372 mm) maximum above the finished floor or ground, the latch release mechanism shall be located on the pool or spa side of the gate not less than 3 inches (76 mm) below the top of the gate, and the gate and barrier shall not have openings greater than 1 1/2 inch (12.7 mm) within 18 inches (457 mm) of the release mechanism. For public pools, for latches on gates along the accessible route, the operable parts of the self-latching devices shall comply with Section 1010.1.9.2 of the International Building Code.

305.4 Structure wall as a barrier. Where a wall of a dwelling or structure serves as part of the barrier and where doors or windows provide direct access to the pool or spa through that wall, one of the following shall be required:

1. Operable windows having a sill height of less than 48 inches (1219 mm) above the indoor finished floor and doors shall have an alarm that produces an audible warning when the window, door or their screens are opened. The alarm shall be listed and labeled as a water hazard entrance alarm in accordance with UL 2017. In dwellings or structures, dwelling units not required to be Accessible units, Type A units or Type B units, the operable parts of the alarm deactivation switches shall be located not greater than 54 inches (1372 mm) and not less than 48 inches (1219 mm) above the finished floor.

2. A safety cover that is listed and labeled in accordance with ASTM F 1346 is installed for the pools and spas.

3. An approved means of protection, such as self-closing doors with self-latching devices, is provided. Such means of protection shall provide a degree of protection that is not less than the protection afforded by Item 1 or 2.

Reason: The intent of the changes is to coordinate the locking arrangements on gates and doors for public pools with the allowances worked out in the IBC as part of the coordination with ADA. The definition for public pool and residential pool would determine where accessibility is appropriate.

The 2015 IBC reads as follows:

IBC 1010.1.9.2 Hardware height. Door handles, pulls, latches, locks and other operating devices shall be installed 34 inches (864 mm) minimum and 48 inches (1219 mm) maximum above the finished floor. Locks used only for security purposes and not used for normal operation are permitted at any height. Exception: Access doors or gates in barrier walls and fences protecting pools, spas and hot tubs shall be permitted to have operable parts of the release of latch on self-latching devices at 54 inches (1372 mm) maximum above the finished floor or ground. Provided the self-latching devices are not also self-locking devices operated by means of a key, electronic opener or integral combination lock.

IBC 1109.13 Controls, operating mechanisms and hardware. Controls, operating mechanisms and hardware intended for operation by the occupant, including switches that control lighting and ventilation and electrical convenience outlets, in accessible spaces, along accessible routes or as parts of accessible elements shall be accessible.

Exceptions:

1. Operable parts that are intended for use only by service or maintenance personnel shall not be required to be accessible.
2. Electrical or communication receptacles serving a dedicated use shall not be required to be accessible.
3. Where two or more outlets are provided in a kitchen above a length of counter top that is uninterrupted by a sink or appliance, one outlet shall not be required to be accessible.
4. Floor electrical receptacles shall not be required to be accessible.
5. HVAC diffusers shall not be required to be accessible.
6. Except for light switches, where redundant controls are provided for a single element, one control in each space shall not be required to be accessible.
7. Access doors or gates in barrier walls and fences protecting pools, spas and hot tubs shall be permitted to comply with Section 1010.1.9.2.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or perform therefor. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is CTC/PMG Proposal Item 4.

Cost Impact: Will not increase the cost of construction
This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
SP 13-15

306.1

Proponent: Janine Snyder, representing Plumbing, Mechanical, and Fuel Gas Code Action Committee (PMGCAC@iccsafe.org)

2015 International Swimming Pool and Spa Code

Revise as follows:

306.1 General. Decks The structural design and installation of decks around pools and spas shall be designed and installed in accordance with the International Residential Code or the International Building Code, as applicable in accordance with Section 102.7.102.7, except as provided in this section.

Reason: The arrangement of the first part of the existing code section can be read “Decks shall be ... installed...”. In other words, one interpretation of this section might conclude that decks are required for every pool and spa. This is not what was intended by the section. This section is only requiring that the design and installation of decks be in accordance with the applicable codes. The revise language clarifies the intent.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This PMGCAC Item 42.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

307.1 General design requirements. The provisions of this section Sections 307.1.1 through 307.1.4 shall apply to all pools and spas.

Exception: The provisions of Sections 307.3 through 307.6 do not apply to listed and labeled portable residential spas and listed and labeled portable residential exercise spas.

307.2 Specific design and material requirements. Sections 307.2.1 through 307.2.4 shall apply to all pools and spas except for listed and labeled portable residential spas and listed and labeled portable residential exercise spas.

307.3 Materials. No change to text.

307.3.1 Beach pools. No change to text.

307.3.2 Compatibility. No change to text.

307.4 Installation. No change to text.

307.5 Freeze protection. No change to text.

307.6 Surface condition. No change to text.

Reason: The existing layout of Section 307 does work very well when attempting apply the Exception in Section 307.1 to only a portion of the sections in Section 307. Generally, good format for an exception is to have the exception "attached" to every section that the exception applies to. This makes the code difficult to read whereas a reorganization is often a better way to accomplish the goal which in this case, is to exempt portable spas from complying with some (but not all) of the requirements in Section 307. Although there is a significant moving around of language and some new sections to accommodate the reorganization, no new requirements are being introduced.

Section 307.1 (and its subsections) are general requirements that apply for all pools and spas. Section 307.2 (and its subsections) are more specific requirements except those requirements do not apply to listed and labeled spas. Remember that specific requirements for listed and labeled spas are covered by Chapter 9.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 43.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Add new text as follows:

307.6 Plastering of pools and spas The plastering of the interior of concrete pools and permanently-installed concrete spas shall be in accordance with APSP 12.

Add new standard(s) as follows:

Reason: The Association of Pool & Spa Professionals, in conjunction with the National Plasters Council and ICC are currently developing the ANSI/APSP/NPC/ICC-12 American National Standard for the Plastering of Swimming Pools. This Standard will provide clear requirements when plastering a swimming pool or a permanently installed concrete spa, in both residential and commercial settings. Plastering is the final coating applied to the shell of a concrete pool or spa. White is the most common, but it can be tinted to other colors by using pigmented aggregate. Pool plaster adds a watertight seal and makes the surface of the pool smoother for contact with swimmers than the underlying rough concrete shell. The pool plaster is a key element for the aesthetics and overall enjoyment of the pool or spa and this standard will ensure that it is applied properly.

Cost Impact: Will not increase the cost of construction.

This proposal will not increase the cost of construction, rather it will help ensure a proper plaster was put on the pool, decreasing the costs associated with having to redo a bad plaster job.

Analysis: A review of the standard proposed for inclusion in the code, ANSI/APSP/NPC/ICC - 12, with regard to the ICC criteria for referenced standards (Section 3.6 of CP#28) will be posted on the ICC website on or before April 2, 2015.
2015 International Swimming Pool and Spa Code

Revised as follows:

307.9 Accessibility. An accessible route to public pools and spas shall be provided in accordance with the International Building Code. Accessibility within public pools and spas shall be provided as required by the accessible recreational facilities provisions of the International Building Code. Accessibility for pools and spas accessory to detached one- and two-family dwellings and townhouses, not more than three stories in height, shall be provided where required by the International Residential Code.

Reason: In Section 307.9, the last sentence not only adds confusion and should be deleted. There is nothing in the IRC that addresses accessibility in pools and spas. Recreational facilities that serve multiple townhouses would be addressed in the IBC. This is CTC/PMG Proposal Item 5.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
308.3 \textbf{Shape}\textit{Dimensions and shape.} This code is not intended to regulate the dimensions and shape of a pool or spa other than shall not be limited provided that water circulation is provided for every water area, underwater areas are designed to take into account the effect that a given shape will have on the safety of bathers and, where regulated by other sections of the code, perimeter access is provided for the minimum required level of circulation to ensure sanitation of pool or spa.

\textbf{Reason:} The existing language seemed to be more of a commentary statement than a requirement. However, there was an underlying intent to the words that needed to be brought out about the general design (dimension and shape) that is critical for the safety of users. Simply stated, you can make a pool or spa any shape or size provided that water circulation, perimeter access and avoidance of bather entrapment is provided for.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 44.

\textbf{Cost Impact:} Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
311.3 Water velocity. The water velocity in suction and return piping shall comply with either Section 311.3.1 or 311.3.2. Pool piping sizes shall be chosen so that at the rated flows for the filtering and cleaning equipment, the operating head of the pump is not exceeded. Water velocity in suction and return piping shall be as required by Section 311.3.1 not exceed 8 fps (2.4 mps).

311.3.1 Public pool and spas. For public pools and spas, suction piping water velocity shall not exceed 6 fps (1.8 mps), return piping water velocity shall not exceed 10 fps (3.0 mps) and water velocity through grates shall not exceed 1.5 fps (0.5 mps) except where compliance with Section 310 further limits the water velocities in piping and through grates.

311.3.2 Residential pool and spas. For residential pools and spas, the water velocity in suction piping and return piping shall not exceed 8 fps (2.4 mps) except where compliance with Section 310 further limits the water velocities in suction and return piping.

Reason: APSP 7-2013 (which is referenced by the 2015 ISPSC) has some different requirements (than the previous edition) with respect to sizing of circulation piping. The ISPSC needs to be updated and clarified so that there is not confusion when comparing the requirements of APSP and the code.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 8.

Cost Impact: Will increase the cost of construction

This proposal will increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code. Specifically, in some cases, the suction piping might have to be larger in order to control the velocity through the suction outlet grate. The requirement for larger piping will have additional cost in both material and labor.
2015 International Swimming Pool and Spa Code

Revise as follows:

313.7 Emergency shutoff switch. An emergency shutoff switch shall be provided to disconnect all power to recirculation and jet system pumps and air blowers. Emergency shutoff switches shall be provided with ready access, be located within sight of the pool or spa, and be located not less than 5 feet (1524 mm) horizontally from the inside walls of the pool or spa that is served by the pumps and blowers controlled by the switch.

Exception: Onground storable pools, permanent inground residential swimming pools, residential spas and residential water features.

Add new definition as follows:

SECTION 202 DEFINITIONS

READY ACCESS: That which enables a fixture, appliance or equipment to be directly reached without requiring the removal or movement of any panel, door or similar obstruction and without the use of a portable ladder, step stool or similar device.

Reason: The emergency shutoff switch should be out in the open and not behind a panel so it is obvious where the switch is for fast access. Using the term "ready access" along with the IMC definition, will make this clear. The definition is identical to the IMC definition for this term. The IMC has scoping control of this defined term where it is used in all codes except for the IRC.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 107.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revised as follows:

316.2 Listed and labeled. Heaters and hot water storage tanks shall be listed and labeled in accordance with the applicable standard listed in Table 316.2.

TABLE 316.2 WATER HEATERS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric water heater</td>
<td>UL 1261, UL 1563 or CSA C22.2 No. 218.1</td>
</tr>
<tr>
<td>Gas-fired water heater</td>
<td>ANSI Z21.56/CSA 4.7a</td>
</tr>
<tr>
<td>Heat exchanger</td>
<td>NSF 50, AHRI 400</td>
</tr>
<tr>
<td>Heat pump water heater</td>
<td>UL 1995, AHRI 1160, CSA C22.2 No. 236</td>
</tr>
<tr>
<td>Photovoltaic solar water heaters</td>
<td>NSF 50</td>
</tr>
<tr>
<td>Thermal radiant solar water heaters</td>
<td>NSF 50</td>
</tr>
</tbody>
</table>

316.4 Installation. Heaters shall be installed in accordance with the manufacturer's specifications and the International Fuel Gas Code, International Mechanical Code, International Energy Conservation Code, NFPA 70 or International Residential Code, as applicable in accordance with Section 102.7.1. Solar thermal water heaters shall be installed in accordance with Section 316.6.

Add new text as follows:

316.6 Solar thermal water heaters. Solar thermal heaters utilized for pools and spas shall comply with Sections 316.6.1 through 316.6.2.

316.6.1 Installation. Solar thermal water heaters shall be installed in accordance with the International Mechanical Code or International Residential Code, as applicable in accordance with Section 102.7.1.

316.6.2 Collectors and panels. Solar thermal collectors and panels shall be listed and labeled in accordance with SRCC 100 or SRCC 600. Collectors and panels shall be permanently marked with the manufacturer's name, model number, and serial number. Such markings shall be located on each collector in a position that is readily viewable after installation of the collector or panel.

Add new standard(s) as follows:

| AHRI 400-01 Liquid to Liquid Heat Exchangers with Addenda 1 and 2 |
| SRCC 100 - 13 Standard 100 for Solar Collectors |
| SRCC 300 - 13 Standard 100 for Solar Water Heating Systems |

Reason: This proposal adds requirements for solar thermal water heater collectors that appears in the IRC to ensure safety and performance of these devices. It also removes references to NSF 50 for solar thermal and PV water heaters since they are outside the scope of NSF 50. Further, it adds reference to AHRI 400 for heat exchangers to align with an existing requirement in the IECC.

Cost Impact: Will not increase the cost of construction.

This proposal will not increase the cost of construction, rather it aligns requirements with what already exists in other codes.

Analysis: A review of the standard proposed for inclusion in the code, AHRI 400-01, SRCC 100 - 13, SRCC 300 - 13, with regard to the ICC criteria for referenced standards (Section 3.6 of CPW28) will be posted on the ICC website on or before April 2, 2015.
2015 International Swimming Pool and Spa Code

Revise as follows:

318.2 Protection of potable water supply. Potable water supply systems shall be designed, installed and maintained so as to prevent contamination from nonpotable liquids, solids or gases being introduced into the potable water supply through cross-connections or other piping connections to the system. Means of protection against backflow in the potable water supply shall be provided by an air gap complying with ASME A112.1.2 or by a backflow prevention assembly in accordance with the International Residential Code or the International Plumbing Code, as applicable in accordance with Section 102.7.1.

Reason: It is not always possible to use an air gap to make the connection of potable water to pool or spa systems. Mechanical backflow prevention assemblies, as outlined in the plumbing codes, is another acceptable method for making potable water connections to non-potable systems such as pools and spas. This is done often. The code never reflects what is common practice. This needs changed.

Cost Impact: Will not increase the cost of construction

Where use of an air gap is impossible, a backflow prevention assembly is the only way to make the connection. This change doesn't cost more than what the existing code was requiring to be impossible.
401.1 Public swimming pools

Scope. The provisions of this chapter shall apply only to public swimming pools. Public swimming pools covered in this chapter include Class A, Class B, Class C, Class E and Class F public swimming pools.

Reason: This is a clean up to make the sentence read in mandatory language. Also, Class F was added to the list of pools because in the last cycle, Class F (wading pools) was added to the language in Section 405 on wading pools and a definition was added to Chapter 2 for Class F. This section was overlooked in those revisions/additions.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 62.

Cost Impact: Will not increase the cost of construction.

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
SP 23-15

401.2

PropONENT: Janine Snyder, representing Plumbing, Mechanical, and Fuel Gas Code Action Committee (PMGCAC@iccio.org)

2015 International Swimming Pool and Spa Code

Revise as follows:

401.2 Scope. The requirements contained in this chapter provide specifications for shall govern the design, equipment, operation, warning signs, installation, sanitation, new construction, and alteration specific to the types of public swimming pools indicated in Section 401.1

Reason: This proposal is a simple clean-up of language to convert the sentence into mandatory language. No new requirements are being proposed. This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 63.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

401.4.1 Class A pool tolerances. Dimensional tolerances for Class A pools shall be determined by the authority that governs such pools provides the accreditation of the pool for competitive events.

401.6 Dimensions for Class A pools. Class A pools shall be designed and constructed to provide with the dimensions determined by the authority that governs such pools provides the accreditation of the pool for competitive events.

Reason: This is clarification about who determines the dimensions and dimensional tolerances for (Class A) competitive pools. There could be confusion that the code official is responsible as the code official is one authority who "governs" pools. The revised wording makes it clear that the accreditation organization such as FINA, NCAA, etc.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes.

Cost Impact: Will not increase the cost of construction.

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

402.1 General. This section covers diving requirements for Class A, Class B, Class C, and Class E pools. Manufactured and fabricated diving equipment and appurtenances shall not be installed on Type O pools.

402.2 Manufactured and fabricated diving equipment. Manufactured and fabricated diving equipment shall be in accordance with Sections 402.3 through 402.14. Manufactured diving equipment shall be located in the deep area of the pool so as to provide the minimum dimensions shown in Table 402.12(1) through (6) and shall be installed in accordance with the manufacturer's instructions. Installation and use instructions for manufactured diving equipment shall be provided by the manufacturer and shall specify the minimum water dimensions required for each diving board and diving stand combination. The manufacturer's instructions shall refer to the water envelope type by dimensionally relating their products to Point A on the water envelopes shown in Table 402.12(1) through (6). The diving board manufacturer shall specify which boards fit on the design pool geometry types as indicated in Table 402.12(1) through (6) as related to Figures 402.12(1), (2), and (6), as applicable.

402.4 Slip resistance. Diving equipment shall have slip resistant walking surfaces.

402.5 Point A. For the application of Table 402.12(1) through (6), Point A shall be the point from which dimensions of width, length, depth, and height are established for the minimum diving water envelope. If the tip of the diving board or diving platform is located at a distance of WA (see Figure 804.1) or A (see Figure 402.12(2)) or greater from the deep end wall and the water depth at that location is equal to or greater than the water depth requirement at Point A, the point on the water surface directly below the center of the tip of the diving board or diving platform shall be identified as Point A.

402.12 Water envelopes. The minimum diving water envelopes shall be in accordance with Table 402.12(1) through (6).

<table>
<thead>
<tr>
<th>POOL TYPE</th>
<th>MINIMUM DIMENSIONS</th>
<th>MINIMUM WIDTH OF POOL AT:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D₁</td>
<td>D₂</td>
</tr>
<tr>
<td>VI</td>
<td>7'-0"</td>
<td>8'-6"</td>
</tr>
<tr>
<td>VII</td>
<td>7'-6"</td>
<td>9'-0"</td>
</tr>
<tr>
<td>VIII</td>
<td>8'-6"</td>
<td>10'-0"</td>
</tr>
<tr>
<td>IX</td>
<td>11'-0"</td>
<td>12'-0"</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

402.12(1) MINIMUM DIVING WATER ENVELOPES FOR CLASS B AND C POOLS

<table>
<thead>
<tr>
<th>FINA Dimensions for Diving Facilities</th>
<th>SPRINGBOARD</th>
<th>PLATFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 metre</td>
<td>3 metres</td>
</tr>
<tr>
<td>Length</td>
<td>4.80</td>
<td>4.80</td>
</tr>
<tr>
<td>Width</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Height</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Horiz</td>
<td>Vert</td>
<td>Horiz</td>
</tr>
</tbody>
</table>

For pools constructed after September 26th, 2013 (see FR 5.3.1):

<table>
<thead>
<tr>
<th>FINA Dimensions for Diving Facilities</th>
<th>SPRINGBOARD</th>
<th>PLATFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 metre</td>
<td>3 metres</td>
</tr>
<tr>
<td>Length</td>
<td>4.80</td>
<td>4.80</td>
</tr>
<tr>
<td>Width</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Height</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Horiz</td>
<td>Vert</td>
<td>Horiz</td>
</tr>
<tr>
<td>A</td>
<td>FROM PLUMMET BACK TO WALL FOR CONCRETE PLATFORM</td>
<td>Designation</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>2.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>FROM PLUMMET BACK TO POOL WALL FOR PEDESTALS AND METAL STANDS</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>A-1</td>
<td>A-3</td>
<td>A-1pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>1.50</td>
<td>1.50</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>1.80</td>
<td>1.80</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C/A</th>
<th>FROM PLUMMET BACK TO PLATFORM plummet directly below</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>A-1</td>
<td>A-3</td>
<td>A-1pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>1.25</td>
<td>1.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>FROM PLUMMET TO POOL WALL AT SIDE</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>C-1</td>
<td>C-3</td>
<td>C-3pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>1.50</td>
<td>1.50</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>1.80</td>
<td>1.80</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>FROM PLUMMET TO ADJACENT PLUMMET</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>E-1</td>
<td>E-3</td>
<td>E-3pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>1.25</td>
<td>1.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>FROM PLUMMET TO POOL WALL AHEAD</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>E-1</td>
<td>E-3</td>
<td>E-3pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>1.25</td>
<td>1.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>CLEAR OVERHEAD BEHIND AND EACH SIDE OF PLUMMET</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>F-1</td>
<td>F-3</td>
<td>F-3pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>1.25</td>
<td>1.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>CLEAR OVERHEAD AHEAD OF PLUMMET</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>F-1</td>
<td>F-3</td>
<td>F-3pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>1.25</td>
<td>1.25</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>DEPTH OF WATER AT PLUMMET</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>H-1</td>
<td>H-3</td>
<td>H-3pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>3.40</td>
<td>3.70</td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>3.50</td>
<td>3.80</td>
<td>3.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>DISTANCE AND DEPTH AHEAD OF PLUMMET FOR ALL STANDS</th>
<th>Designation</th>
<th>Minimum</th>
<th>Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Designation</td>
<td>I-1</td>
<td>I-3</td>
<td>I-3pl</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>3.00</td>
<td>3.30</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>3.00</td>
<td>3.40</td>
<td>3.70</td>
</tr>
</tbody>
</table>

J	M	DISTANCE AND DEPTH EACH SIDE OF PLUMMET	Designation	Minimum	Preferred			
	Designation	M-1	M-3	M-3pl	M-5	M-7.5	M-10	
	Minimum	1.50	1.50	1.50	1.50	1.50	1.50	1.50
	Preferred	2.00	2.50	2.50	2.50	2.50	2.50	2.50

| K | MAXIMUM SLOPE TO REDUCE DIMENSION BEYOND FULL REQUIREMENTS FOR POOL DEPTH AND CEILING HEIGHT | 30 DEGREES | | | | | | |
*Note: The minimum distance between adjacent platforms must be at least 0.25 metres.

Note: Dimensions B (plummet to pool wall at side) and C (plummet to adjacent plummet) apply to Platforms with widths as detailed. If Platform widths are increased then B and C are to be increased by half the additional width(s).

Note: The 10 Metre Platform must project 0.25 metres beyond any adjacent platform.

Note: All platforms

Note: The leading edge of the concrete platforms for springboards must be at least constructed to be directly above the pool wall or beyond.

FIGURE 402.12(3)(Add # Here)
Figure for Tables 402.12(2) through 402.12(5)

TABLE 402.12(3)
MINIMUM DIVING WATER ENVELOPES FOR CLASS A POOLS FOR USA DIVING-SANCTIONED DIVING EVENTS
(Feet-decimal inches)
(see figure 401.12(2))

FINA DIVING WATER ENVELOPE CONVERSIONS TO U.S. DIMENSIONS FOR NEW USA DIVING FACILITIES
FROM FINA HANDBOOK 2013-2017

<table>
<thead>
<tr>
<th>USA DIVING Dimensions for Diving Facilities</th>
<th>SPRINGBOARD</th>
<th>PLATFORM</th>
</tr>
</thead>
</table>

FINA, USA DIVING, and NCAA DIVING FACILITIES DIAGRAM
<table>
<thead>
<tr>
<th></th>
<th>1 meter</th>
<th>3 meters</th>
<th>1 meter</th>
<th>3 meters</th>
<th>5 meters</th>
<th>7.5 meters</th>
<th>10 meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>15' - 10.95"</td>
<td>15' - 10.95"</td>
<td>16' - 4.85"</td>
<td>16' - 4.85"</td>
<td>19' - 8.22"</td>
<td>19' - 8.22"</td>
<td>19' - 8.22"</td>
</tr>
<tr>
<td>Width</td>
<td>1' - 7.69"</td>
<td>1' - 7.69"</td>
<td>2' - 3.37" minimum</td>
<td>2' - 6.18" preferred</td>
<td>2' - 3.37" minimum</td>
<td>2' - 6.18" preferred</td>
<td>9' - 6.74"</td>
</tr>
<tr>
<td>Height</td>
<td>3' - 3.37"</td>
<td>9' - 6.11"</td>
<td>1' - 11.63" minimum</td>
<td>3' - 3.37" preferred</td>
<td>8' - 6.37" minimum</td>
<td>9' - 10.11" preferred</td>
<td>16' - 4.85"</td>
</tr>
</tbody>
</table>

For pools constructed after September 2013
Extrapolated from FINA HANDBOOK 2013-2017 (See F.R. 5.3.1)

<table>
<thead>
<tr>
<th></th>
<th>Horizontal</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Designation</td>
<td>A-1</td>
<td>A-2</td>
<td>A-1pl</td>
<td>A-3pl</td>
<td>A-5</td>
<td>A-7.5</td>
<td>A-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FROM PLUMMET BACK TO POOL WALL FOR CONCRETE PLATFORM</td>
<td>Minimum</td>
<td>7' - 3.40"</td>
<td>7' - 3.40"</td>
<td>2' - 5.53"</td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Preferred</td>
<td></td>
<td></td>
<td>7' - 3.40"</td>
<td>7' - 3.40"</td>
<td>2' - 5.53"</td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
</tr>
<tr>
<td></td>
<td>FROM PLUMMET BACK TO POOL WALL FOR PEDESTALS AND METAL STANDS</td>
<td>Minimum</td>
<td>4' - 11.06"</td>
<td>4' - 11.06"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/A</td>
<td>Preferred</td>
<td>5' - 10.87"</td>
<td>5' - 10.87"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Designation</td>
<td></td>
<td></td>
<td></td>
<td>AA 9/1</td>
<td>A/A 7.5/3.1</td>
<td>A/A 10/5/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/A</td>
<td>FROM PLUMMET BACK TO PLATFORM PLUMMET DIRECTLY BELOW</td>
<td>Minimum</td>
<td></td>
<td></td>
<td>2' - 5.53"</td>
<td>2' - 5.53"</td>
<td>2' - 5.53"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td></td>
<td></td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
<td>4' - 1.22"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Designation</td>
<td>B-1</td>
<td>B-3</td>
<td>B-1pl</td>
<td>B-3pl</td>
<td>B-5</td>
<td>B-7.5</td>
<td>B-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FROM PLUMMET TO POOL WALL AT SIDE</td>
<td>Minimum</td>
<td>9' - 2.43"</td>
<td>11' - 5.80"</td>
<td>8' - 2.43"</td>
<td>9' - 10.11"</td>
<td>13' - 1.48"</td>
<td>14' - 9.17"</td>
<td>18' - 10.38"</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Preferred</td>
<td>9' - 2.43"</td>
<td>11' - 5.80"</td>
<td>11' - 5.80"</td>
<td>11' - 9.74"</td>
<td>14' - 9.17"</td>
<td>15' - 7.01"</td>
<td>18' - 10.38"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Designation</td>
<td>C1-1</td>
<td>C3-3.3-3.1</td>
<td>C1-1pl</td>
<td>C3-3pl-1pl</td>
<td>C5-3.5-1</td>
<td>C7-5.5-3.1</td>
<td>C9-7.5-5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FROM PLUMMET TO ADJACENT PLUMMET</td>
<td>Minimum</td>
<td>6' - 6.74"</td>
<td>7' - 2.62"</td>
<td>6' - 0.84"</td>
<td>7' - 2.62"</td>
<td>9' - 4.21"</td>
<td>9' - 0.27"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICC COMMITTEE ACTION HEARINGS ::: April, 2015
SP30
| **D** | **FROM PLUMMET TO POOL WALL AHEAD** | **Preferred** | **Designation** | **Min 7.5m** | **9.0m** | **10m** | **10.6m** | **12m** | **12.6m** | **15m** | **15.6m** | **18m** |
|---|---|---|---|---|---|---|---|---|---|---|---|
| **Preferred** | **Designation** | **Min 29'-6.33"** | **D-1** | **D-3** | **D-5** | **D-7.5** | **D-10** |
| **ON PLUMMET FROM BOARD TO CEILING** | **Preferred** | **Designation** | **Min 7.5m** | **9.0m** | **10m** | **10.6m** | **12m** | **12.6m** | **15m** | **15.6m** | **18m** |
| **CLEAR OVERHEAD BEHIND EACH SIDE OF PLUMMET** | **Preferred** | **Designation** | **Min 7.5m** | **9.0m** | **10m** | **10.6m** | **12m** | **12.6m** | **15m** | **15.6m** | **18m** |
| **CLEAR OVERHEAD AHEAD OF PLUMMET** | **Preferred** | **Designation** | **Min 7.5m** | **9.0m** | **10m** | **10.6m** | **12m** | **12.6m** | **15m** | **15.6m** | **18m** |
| **DEPTH OF WATER AT PLUMMET** | **Preferred** | **Designation** | **Min 7.5m** | **9.0m** | **10m** | **10.6m** | **12m** | **12.6m** | **15m** | **15.6m** | **18m** |
| **DISTANCE AND DEPTH AHEAD OF PLUMMET FOR ALL STANDS** | **Preferred** | **Designation** | **Min 7.5m** | **9.0m** | **10m** | **10.6m** | **12m** | **12.6m** | **15m** | **15.6m** | **18m** |
| **DISTANCE AND DEPTH EACH SIDE OF PLUMMET** | **Preferred** | **Designation** | **Min 7.5m** | **9.0m** | **10m** | **10.6m** | **12m** | **12.6m** | **15m** | **15.6m** | **18m** |

Note 1: The leading edge of the concrete platforms for springboards must be at least constructed to be directly above the pool wall or beyond.

Note 2: All platforms must project 2' 6.53" (0.75 meters) beyond any platform directly below.

Note 3: Dimensions B (plummet to pool wall at side) and C (plummet to adjacent plummet) apply to Platforms with widths as detailed. If Platform widths are increased then B and C are to be increased by half the additional width(s).

Note 4: The minimum distance between adjacent platforms must be at least 0'-9.84" (0.25 meters).

Note 5: The 10 Metre Platform must project at least 0'-9.84" (0.25 meters) beyond any adjacent platform.

Note 6: Maximum slope to reduce dimension beyond minimum requirements for pool depth and ceiling height is 30 degrees.

MAXIMUM SLOPE TO REDUCE DIMENSION BEYOND MINIMUM REQUIREMENTS FOR POOL DEPTH AND CEILING HEIGHT IS 30 DEGREES.
Note 6: In dimension H 'Dept of Water at Plummet', USA DIVING has approved 11’ for 1m springboard and 12’ for 3m springboard and 5m platform as the minimum depth.

TABLE 402.12(4)

MINIMUM DIVING WATER ENVELOPES FOR CLASS A POOLS FOR USA DIVING-SANCTIONED DIVING EVENTS

(Feet-fractional inches)

(SEE FIGURE 401.12(2))

FINA DIVING WATER ENVELOPE CONVERSIONS TO U.S. DIMENSIONS FOR NEW USA DIVING FACILITIES

FROM FINA HANDBOOK 2013-2017

<table>
<thead>
<tr>
<th>USA DIVING Dimensions for Diving Facilities</th>
<th>SPRINGBOARD</th>
<th>PLATFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 meter</td>
<td>3 meters</td>
</tr>
<tr>
<td>For pools constructed after September 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td>Width</td>
</tr>
<tr>
<td></td>
<td>15’ - 11”</td>
<td>15’ - 11”</td>
</tr>
<tr>
<td></td>
<td>3’ - 3 3/8”</td>
<td>9’ - 10 1/8”</td>
</tr>
</tbody>
</table>

A

FROM PLUMMET BACK TO POOL WALL FOR CONCRETE PLATFORM

<table>
<thead>
<tr>
<th>Designation</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>7 3/4”</td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>7 3/4”</td>
<td></td>
</tr>
<tr>
<td>A-1pl</td>
<td>7 3/4”</td>
<td></td>
</tr>
<tr>
<td>A-3pl</td>
<td>7 3/4”</td>
<td></td>
</tr>
<tr>
<td>A-5</td>
<td>7 3/4”</td>
<td></td>
</tr>
<tr>
<td>A-7.5</td>
<td>7 3/4”</td>
<td></td>
</tr>
<tr>
<td>A-10</td>
<td>7 3/4”</td>
<td></td>
</tr>
</tbody>
</table>

AA

FROM PLUMMET BACK TO PLATFORM PLUMMET DIRECTLY BELOW

<table>
<thead>
<tr>
<th>Designation</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>2”</td>
<td>0 7/16”</td>
</tr>
<tr>
<td>AA</td>
<td>2”</td>
<td>0 7/16”</td>
</tr>
<tr>
<td>AA</td>
<td>2”</td>
<td>0 7/16”</td>
</tr>
</tbody>
</table>

B

FROM PLUMMET TO POOL WALL AT SIDE

<table>
<thead>
<tr>
<th>Designation</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>8’</td>
<td>11’ 5/8”</td>
</tr>
<tr>
<td>B-3</td>
<td>8’</td>
<td>11’ 5/8”</td>
</tr>
<tr>
<td>B-1pl</td>
<td>8’</td>
<td>11’ 5/8”</td>
</tr>
<tr>
<td>B-3pl</td>
<td>8’</td>
<td>11’ 5/8”</td>
</tr>
<tr>
<td>B-5</td>
<td>8’</td>
<td>11’ 5/8”</td>
</tr>
<tr>
<td>B-7.5</td>
<td>8’</td>
<td>11’ 5/8”</td>
</tr>
<tr>
<td>B-10</td>
<td>8’</td>
<td>11’ 5/8”</td>
</tr>
</tbody>
</table>

C

FROM PLUMMET TO ADJACENT PLUMMET

<table>
<thead>
<tr>
<th>Designation</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>6’ - 6”</td>
<td>7’ - 2”</td>
</tr>
<tr>
<td>C-3-3-1</td>
<td>6’ - 6”</td>
<td>7’ - 2”</td>
</tr>
<tr>
<td>C-1pl</td>
<td>6’ - 6”</td>
<td>7’ - 2”</td>
</tr>
<tr>
<td>C-3-3-1pl</td>
<td>6’ - 6”</td>
<td>7’ - 2”</td>
</tr>
<tr>
<td>C-5</td>
<td>6’ - 6”</td>
<td>7’ - 2”</td>
</tr>
<tr>
<td>C-7.5-5</td>
<td>6’ - 6”</td>
<td>7’ - 2”</td>
</tr>
<tr>
<td>C-10-7.5-5</td>
<td>6’ - 6”</td>
<td>7’ - 2”</td>
</tr>
</tbody>
</table>
D

FROM POOL WALL AHEAD

<table>
<thead>
<tr>
<th>Designation</th>
<th>D-1</th>
<th>D-3</th>
<th>D-1pl</th>
<th>D-3pl</th>
<th>D-5</th>
<th>D-7.5</th>
<th>D-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>29’-6”</td>
<td>33’-7”</td>
<td>26’-3”</td>
<td>31’-2”</td>
<td>33’-7”</td>
<td>36’-1”</td>
<td>44’-3”</td>
</tr>
<tr>
<td>Preferred</td>
<td>29’-6”</td>
<td>33’-7”</td>
<td>26’-3”</td>
<td>31’-2”</td>
<td>33’-7”</td>
<td>36’-1”</td>
<td>44’-3”</td>
</tr>
</tbody>
</table>

E

ON PLUMMET FROM BOARD TO CEILING

<table>
<thead>
<tr>
<th>Designation</th>
<th>E-1</th>
<th>E-3</th>
<th>E-1pl</th>
<th>E-3pl</th>
<th>E-5</th>
<th>E-7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>16’-4”</td>
<td>21’-4”</td>
<td>10’-8”</td>
<td>10’-8”</td>
<td>10’-8”</td>
<td>10’-8”</td>
</tr>
<tr>
<td>Preferred</td>
<td>16’-4”</td>
<td>21’-4”</td>
<td>10’-8”</td>
<td>10’-8”</td>
<td>10’-8”</td>
<td>10’-8”</td>
</tr>
</tbody>
</table>

F

CLEAR OVERHEAD BEHIND AND EACH SIDE OF PLUMMET

<table>
<thead>
<tr>
<th>Designation</th>
<th>F-1</th>
<th>F-3</th>
<th>F-1pl</th>
<th>F-3pl</th>
<th>F-5</th>
<th>F-7.5</th>
<th>F-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>8’-2”</td>
<td>16’-4”</td>
<td>9’-0”</td>
<td>9’-0”</td>
<td>9’-0”</td>
<td>9’-0”</td>
<td>9’-0”</td>
</tr>
<tr>
<td>Preferred</td>
<td>8’-2”</td>
<td>16’-4”</td>
<td>9’-0”</td>
<td>9’-0”</td>
<td>9’-0”</td>
<td>9’-0”</td>
<td>9’-0”</td>
</tr>
</tbody>
</table>

G

CLEAR OVERHEAD AHEAD OF PLUMMET

<table>
<thead>
<tr>
<th>Designation</th>
<th>G-1</th>
<th>G-3</th>
<th>G-1pl</th>
<th>G-3pl</th>
<th>G-5</th>
<th>G-7.5</th>
<th>G-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
</tr>
<tr>
<td>Preferred</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
<td>16’-4”</td>
</tr>
</tbody>
</table>

H

DEPTH OF WATER AT PLUMMET

<table>
<thead>
<tr>
<th>Designation</th>
<th>H-1</th>
<th>H-3</th>
<th>H-1pl</th>
<th>H-3pl</th>
<th>H-5</th>
<th>H-7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>11’</td>
<td>12’</td>
<td>10’-6”</td>
<td>10’-6”</td>
<td>11’-5”</td>
<td>13’-16”</td>
</tr>
<tr>
<td>Preferred</td>
<td>11’</td>
<td>12’</td>
<td>10’-6”</td>
<td>10’-6”</td>
<td>11’-5”</td>
<td>13’-16”</td>
</tr>
</tbody>
</table>

I

DISTANCE AND DEPTH AHEAD OF PLUMMET FOR ALL STANDS

<table>
<thead>
<tr>
<th>Designation</th>
<th>I-1</th>
<th>I-3</th>
<th>I-1pl</th>
<th>I-3pl</th>
<th>I-5</th>
<th>I-7.5</th>
<th>I-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>16’-4”</td>
<td>10’-9”</td>
<td>14’-9”</td>
<td>14’-9”</td>
<td>10’-3”</td>
<td>11’-1”</td>
<td>12’-3”</td>
</tr>
<tr>
<td>Preferred</td>
<td>16’-4”</td>
<td>10’-9”</td>
<td>14’-9”</td>
<td>14’-9”</td>
<td>10’-3”</td>
<td>11’-1”</td>
<td>12’-3”</td>
</tr>
</tbody>
</table>

J

DISTANCE AND DEPTH EACH SIDE OF PLUMMET

<table>
<thead>
<tr>
<th>Designation</th>
<th>J-1</th>
<th>J-3</th>
<th>J-1pl</th>
<th>J-3pl</th>
<th>J-5</th>
<th>J-7.5</th>
<th>J-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>4’-11”</td>
<td>10’-9”</td>
<td>6’-6”</td>
<td>11’-9”</td>
<td>4’-7”</td>
<td>10’-2”</td>
<td>9’-10”</td>
</tr>
<tr>
<td>Preferred</td>
<td>4’-11”</td>
<td>10’-9”</td>
<td>6’-6”</td>
<td>11’-9”</td>
<td>4’-7”</td>
<td>10’-2”</td>
<td>9’-10”</td>
</tr>
</tbody>
</table>

N

MAXIMUM SLOPE TO REDUCE DIMENSION BEYOND MINIMUM REQUIREMENTS FOR POOL DEPTH AND CEILING HEIGHT IS 30 DEGREES.

Note 1: The leading edge of the concrete platforms for springboards must be at least constructed to be directly above the pool wall or beyond.

Note 2: All platforms must project 2'-5 9/16" (0.75 meters) beyond any platform directly below.

Note 3: Dimensions B (plummet to pool wall at side) and C (plummet to adjacent plummet) apply to platforms with widths as detailed. If platform widths are increased then B and C are to be increased by half the additional width.

Note 4: The minimum distance between adjacent platforms must be at least 0'-9 7/8" (0.25 meters).

ICC COMMITTEE ACTION HEARINGS ::: April, 2015

SP33
TABLE 402.12(5)
MINIMUM DIVING ENVELOPES FOR CLASS A POOLS FOR NCAA-SANCTIONED DIVING EVENTS

(Feet and Inches)

FINA DIVING WATER ENVELOPE CONVERSIONS TO U.S. DIMENSIONS FOR NEW NCAA DIVING FACILITIES
FROM FINA HANDBOOK 2013 - 2017

<table>
<thead>
<tr>
<th>Dimensions for Diving Facilities</th>
<th>NCAA Recommended Dimensions for Diving Facilities</th>
<th>SPRINGBOARD</th>
<th>PLATFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length</td>
<td>1 meter</td>
<td>3 meters</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>16'-0"</td>
<td>16'-0"</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>3'-4"</td>
<td>9'-11"</td>
</tr>
</tbody>
</table>

Revised October 1, 2013

<table>
<thead>
<tr>
<th>Designation</th>
<th>From plummet to pool wall for concrete platform</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/A</td>
<td>Minimum</td>
<td>7'-4"</td>
<td>7'-4"</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>7'-4"</td>
<td>7'-4"</td>
</tr>
<tr>
<td></td>
<td>From plummet to pool wall for pedestals and metal stands</td>
<td>Minimum</td>
<td>5'</td>
</tr>
<tr>
<td></td>
<td>Preferred</td>
<td>5'-11"</td>
<td>5'-11"</td>
</tr>
</tbody>
</table>

Designation

A/A

- From plummet to pool wall ahead
 - Minimum: 29'-7" 33'-8" 26'-3" 31'-3" 33'-8" 36'-2" 44'-4"
 - Preferred: 29'-7" 33'-8" 26'-3" 31'-3" 33'-8" 36'-2" 44'-4"

On plummet, from board to ceiling

- Minimum: 16'-5" 16'-5" 10'-8" 10'-8" 10'-8" 10'-8" 13'-2"
 - Preferred: 16'-5" 16'-5" 11'-6" 11'-6" 11'-6" 11'-6" 16'-5"
TABLE 402.12(6)

MINIMUM DIVING WATER ENVELOPES FOR CLASS A POOLS FOR NFHS-SANCTIONED DIVING EVENTS

(SEE FIGURE 402.12(6))

Matrix of Springboard Dimensions for High School Competitive Diving

NATIONAL FEDERATION OF STATE HIGH SCHOOL ASSOCIATIONS (NFHS)

<table>
<thead>
<tr>
<th>Rule 9, Section 1, Article 1</th>
<th>Board Height (m)</th>
<th>U.S Dimensions</th>
<th>Metric Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Board</td>
<td>1m</td>
<td>16'</td>
<td>4.877m</td>
</tr>
<tr>
<td>Width of Board</td>
<td>1m</td>
<td>20'</td>
<td>5.08m</td>
</tr>
<tr>
<td>a. End of springboard Back to Pool Wall</td>
<td>1m</td>
<td>6'</td>
<td>1.829m</td>
</tr>
<tr>
<td>b. Center of board to center of another board</td>
<td>1m</td>
<td>8'</td>
<td>2.438m</td>
</tr>
<tr>
<td>c. Center of board to pool side wall</td>
<td>1m</td>
<td>10'</td>
<td>3.048m</td>
</tr>
<tr>
<td>d. End of springboard to forward pool wall</td>
<td>1m</td>
<td>29'</td>
<td>8.839m</td>
</tr>
<tr>
<td>e. Top of springboard to ceiling overhead</td>
<td>1m</td>
<td>16'</td>
<td>4.877m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Water depth at any point 2' to 5' in front of the end of the board must be 12' (3.658m) or more, except for pools constructed prior to January 1987, where water depth 2 to 5 feet in front of the end of the board must be a minimum of 10 feet (3.045m).</td>
<td>ft</td>
<td>12' / 10'</td>
</tr>
<tr>
<td>R</td>
<td>Maximum depth reduction rate of diving pools which do not exceed minimum depth requirement shall be 6 1/4% for a distance of 16.5' (5.0m) forward and 6' (1.829m) back and to the sides. Deeper pools may have proportionally steeper depth reduction rates.</td>
<td>ft</td>
<td>--</td>
</tr>
</tbody>
</table>

FIGURE 402.12(6)([Add # Here])
FIGURE FOR TABLE 402.12(6)
MINIMUM DIVING WATER ENVELOPE FOR HIGH SCHOOL POOLS
WITH TWO 1 METER SPRINGBOARDS

Overhead View

Side View

Reason: Architects, contractors, and zoning officers have often asked for a conversion table of the FINA dimensions to U.S. dimensions. The three national governing bodies have different dimensional conversion standards. This information needs to be in this publication so that there is not misinterpretation of what is required in USA Diving, NCAA, and high school diving facilities to guard against a facility not being able to a sanction for competition.

Cost Impact: Will not increase the cost of construction
These dimensions are already a requirement for competition pools and therefore, there is no change in the cost of construction. Having this information all in one place might eliminate rework costs and lower the cost of installing these pools.
2015 International Swimming Pool and Spa Code

Revised as follows:

402.3 Installation. The installation of manufactured diving equipment shall be in accordance with Sections 402.3 through 402.12. Manufactured diving equipment shall be located in the deep area of the pool so as to provide the minimum dimensions shown in Table 402.12 and shall be installed in accordance with the manufacturer's instructions. Installation and use instructions for manufactured diving equipment shall be provided by the manufacturer and shall specify the minimum diving water envelope dimensions required for each diving board and diving stand combination. The manufacturer's instructions shall refer to the water envelope type by dimensionally relating their products to Point A on the diving water envelopes shown in Table 402.12. The diving board manufacturer shall specify which boards fit on the design pool geometry types as indicated in Table 402.12.

Reason: This is strictly an editorial clean up to correctly use the phrase "diving water envelope" when talking about diving features for a pool.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 73.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

402.6 Location of pool features in a diving pool. Where a pool is designed for use with diving equipment, the location of steps, pool stairs, ladders, underwater benches, underwater ledges, special features and other accessory items shall be outside of the minimum diving water envelope. See shape at the design waterline as depicted in Figure 322.2.

Reason: This is partially an editorial change in that the “See Figure 322.2” was dangling at the end of this section without a real connection to the other words. The words “shape at the design waterline” is an especially important addition to make clear that underwater elements such as benches and ledges cannot encroach on the straight downward projection of the shape of the diving water envelope at the waterline. It is one thing to make sure that the sloped side walls of a pool are outside of the 3-D shape of the diving water envelope indicated in Figure 804.1 but to allow a horizontal flat surface under the water to be close to the outside of the 3-D shape could be an unnecessarily risky interpretation. Therefore, this improved wording clarifies that those underwater features are to be kept outside of the diving water envelope shape at the design waterline. This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 82.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

410.1 Dressing and sanitary Toilet facilities. Dressing and sanitary facilities shall be provided for Class A and B pools as shall be provided with toilet facilities having the required number of plumbing fixtures in accordance with the International Building Code or the International Plumbing Code.

Reason: As there is not a requirement for providing dressing rooms or bathing facilities in the IPC or IBC, it doesn't make sense to send the reader on a hunt for something that doesn't exist. Only plumbing fixtures are required by IPC/IBC so this section just needs to say that.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 110.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

609.3.1 Deck shower. Not less than one deck shower and not greater than half of the total number of showers required by Section 609.2 shall be located on the deck of or at the entrance of each pool.

Reason: This proposal is a clarification of existing code and does not add new requirements.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 109.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because no additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
The splash zone shall comply with Sections 612.4.2 through 612.4.5. Sprays, nozzles, and water feature systems shall be supplied with water from the discharge of the recirculation pump or from separate pumps. Where separate pumps are installed for the recirculation system and the spray nozzles system, suction intakes for those pumps shall be located on opposite ends of the basin.

The basin shall be constructed of materials which are inert, corrosion resistant and non-toxic. Basins shall be constructed of concrete, fiberglass, high density polyethylene, stainless steel or other approved materials. The design of basins shall anticipate all anticipated loading conditions. All spray nozzles shall be designed to be clearly visible. Nozzles, other than those on walking surfaces, shall be designed to be clearly visible.

Nozzles on walking surfaces. Water nozzles that spray from surfaces shall be flush with those surfaces. Openings in such nozzles shall not exceed ½ inch (12.7 mm).

Other nozzles. Nozzles, other than those on walking surfaces, shall be supplied with water from the surge basin.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Circulation system. The circulation system shall consist of the equipment covered in Sections 612.5.1 through 612.5.3.

Catch screen. A catch screen or basket shall be provided for splash zone drainage piping connections to the surge basin. The screen or basket shall be designed to prevent larger debris from entering the surge basin.

Surge basin. A surge basin shall be provided having a capacity of not less than 4000 gallons or the number of gallons that can be pumped in one minute by the combination of all spray pad and recirculation pumps, whichever is greater.

Basin materials and design. The basin shall be constructed of materials which are inert, corrosion resistant and non-toxic. Basins shall be constructed of concrete, fiberglass, high density polyethylene, stainless steel or other approved materials. The design of basins shall anticipate all anticipated loading conditions. Such loading conditions shall be determined by a design professional who has experience in the design of public pools.

Basin access. The basin shall be designed for access to cleaning and inspection. Not less than one access of opening of not less than 3 foot (914mm) shall be provided for placement of a ladder into the basin. All access opening covers shall be locked or shall require tools to open.

Circulation pump. The circulation pump shall be sized to turnover the surge basin capacity in ½ hour or less. The intake for the pump shall be located at the lowest elevation of the surge basin. Where separate pumps are installed for the circulation system and the spray nozzles system, the suction intakes for those pumps shall be located on opposite ends of the basin.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Other nozzles. Nozzles, other than those on walking surfaces, shall be designed to be clearly visible.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Circulation system. The circulation system shall consist of the equipment covered in Sections 612.5.1 through 612.5.3.

Catch screen. A catch screen or basket shall be provided for splash zone drainage piping connections to the surge basin. The screen or basket shall be designed to prevent larger debris from entering the surge basin.

Surge basin. A surge basin shall be provided having a capacity of not less than 4000 gallons or the number of gallons that can be pumped in one minute by the combination of all spray pad and recirculation pumps, whichever is greater.

Basin materials and design. The basin shall be constructed of materials which are inert, corrosion resistant and non-toxic. Basins shall be constructed of concrete, fiberglass, high density polyethylene, stainless steel or other approved materials. The design of basins shall anticipate all anticipated loading conditions. Such loading conditions shall be determined by a design professional who has experience in the design of public pools.

Basin access. The basin shall be designed for access to cleaning and inspection. Not less than one access of opening of not less than 3 foot (914mm) shall be provided for placement of a ladder into the basin. All access opening covers shall be locked or shall require tools to open.

Circulation pump. The circulation pump shall be sized to turnover the surge basin capacity in ½ hour or less. The intake for the pump shall be located at the lowest elevation of the surge basin. Where separate pumps are installed for the circulation system and the spray nozzles system, the suction intakes for those pumps shall be located on opposite ends of the basin.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Other nozzles. Nozzles, other than those on walking surfaces, shall be designed to be clearly visible.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Circulation system. The circulation system shall consist of the equipment covered in Sections 612.5.1 through 612.5.3.

Catch screen. A catch screen or basket shall be provided for splash zone drainage piping connections to the surge basin. The screen or basket shall be designed to prevent larger debris from entering the surge basin.

Surge basin. A surge basin shall be provided having a capacity of not less than 4000 gallons or the number of gallons that can be pumped in one minute by the combination of all spray pad and recirculation pumps, whichever is greater.

Basin materials and design. The basin shall be constructed of materials which are inert, corrosion resistant and non-toxic. Basins shall be constructed of concrete, fiberglass, high density polyethylene, stainless steel or other approved materials. The design of basins shall anticipate all anticipated loading conditions. Such loading conditions shall be determined by a design professional who has experience in the design of public pools.

Basin access. The basin shall be designed for access to cleaning and inspection. Not less than one access of opening of not less than 3 foot (914mm) shall be provided for placement of a ladder into the basin. All access opening covers shall be locked or shall require tools to open.

Circulation pump. The circulation pump shall be sized to turnover the surge basin capacity in ½ hour or less. The intake for the pump shall be located at the lowest elevation of the surge basin. Where separate pumps are installed for the circulation system and the spray nozzles system, the suction intakes for those pumps shall be located on opposite ends of the basin.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Other nozzles. Nozzles, other than those on walking surfaces, shall be designed to be clearly visible.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Circulation system. The circulation system shall consist of the equipment covered in Sections 612.5.1 through 612.5.3.

Catch screen. A catch screen or basket shall be provided for splash zone drainage piping connections to the surge basin. The screen or basket shall be designed to prevent larger debris from entering the surge basin.

Surge basin. A surge basin shall be provided having a capacity of not less than 4000 gallons or the number of gallons that can be pumped in one minute by the combination of all spray pad and recirculation pumps, whichever is greater.

Basin materials and design. The basin shall be constructed of materials which are inert, corrosion resistant and non-toxic. Basins shall be constructed of concrete, fiberglass, high density polyethylene, stainless steel or other approved materials. The design of basins shall anticipate all anticipated loading conditions. Such loading conditions shall be determined by a design professional who has experience in the design of public pools.

Basin access. The basin shall be designed for access to cleaning and inspection. Not less than one access of opening of not less than 3 foot (914mm) shall be provided for placement of a ladder into the basin. All access opening covers shall be locked or shall require tools to open.

Circulation pump. The circulation pump shall be sized to turnover the surge basin capacity in ½ hour or less. The intake for the pump shall be located at the lowest elevation of the surge basin. Where separate pumps are installed for the circulation system and the spray nozzles system, the suction intakes for those pumps shall be located on opposite ends of the basin.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Other nozzles. Nozzles, other than those on walking surfaces, shall be designed to be clearly visible.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Circulation system. The circulation system shall consist of the equipment covered in Sections 612.5.1 through 612.5.3.

Catch screen. A catch screen or basket shall be provided for splash zone drainage piping connections to the surge basin. The screen or basket shall be designed to prevent larger debris from entering the surge basin.

Surge basin. A surge basin shall be provided having a capacity of not less than 4000 gallons or the number of gallons that can be pumped in one minute by the combination of all spray pad and recirculation pumps, whichever is greater.

Basin materials and design. The basin shall be constructed of materials which are inert, corrosion resistant and non-toxic. Basins shall be constructed of concrete, fiberglass, high density polyethylene, stainless steel or other approved materials. The design of basins shall anticipate all anticipated loading conditions. Such loading conditions shall be determined by a design professional who has experience in the design of public pools.

Basin access. The basin shall be designed for access to cleaning and inspection. Not less than one access of opening of not less than 3 foot (914mm) shall be provided for placement of a ladder into the basin. All access opening covers shall be locked or shall require tools to open.

Circulation pump. The circulation pump shall be sized to turnover the surge basin capacity in ½ hour or less. The intake for the pump shall be located at the lowest elevation of the surge basin. Where separate pumps are installed for the circulation system and the spray nozzles system, the suction intakes for those pumps shall be located on opposite ends of the basin.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.

Other nozzles. Nozzles, other than those on walking surfaces, shall be designed to be clearly visible.

Potable water for foggers and misters. Foggers and misters that produce finely atomized water mists shall be supplied only with potable water. Foggers and misters shall not be supplied with water from the surge basin.
These types of attractions which means that any supplier of these attractions could provide any kind of equipment (of safe design or not). In some cases, having these regulations in code will make the cost of some suppliers’ attraction packages be more than if they did not have to comply with these minimum safety requirements. For other suppliers, these requirements are already included in their standard packages.
2015 International Swimming Pool and Spa Code

Revise as follows:

809.3 Secondary entries and exits. Where water depth in the deep area of a pool exceeds 5 feet (1524 mm), a means of entry and exit shall be provided in the deep area of the pool.

Exception: In pools where a deep end egress presents a potential hazard, handholds are permitted to be substituted for a means of egress.

Reason: The language being proposed is due to what was adopted on June 28, 2012 as ANSI approved errata to the 2011 edition of the ANSI/APSP/ICC-5 American National Standard for Residential Inground Swimming Pools, which provides in Section 6.1.1 the following exception: “In pools where a deep end egress may present a potential hazard, handholds may be substituted for a means of egress.” This code proposal attempts to take that errata and put it into code language that will ensure consistency between the ISPSC and what is in the APSP-5 Standard. The reason this change occurred in the APSP-5 standard was due to concerns from pool builders and fiberglass manufacturers that the language in Section 6.1 of the standard, which correlates with Section 809.2 of the ISPSC, would create problems in both construction and fiberglass manufacturing with existing molds - if an exception were not added existing molds would no longer be able to be used.

"Vanishing edge pools that extend over the side of a mountain (recent issue of Aqua Magazine that provides an extreme example but an example nonetheless) or where the vanishing edge is in a backyard elevated 10 feet above the surrounding property line is a more common example. In these cases if you were to exit the deep end, you’d fall and get injured or in the case of the mountain you’d most likely die... so we do not want to have an egress in these type of situations. The reason handholds would be allowed is that the edge of the wall itself may serve as a handhold, if it slopes away from the pool interior toward the exterior.”

The exception added to the APSP-5 standard and being proposed here for inclusion in the ISPSC will help clarify and remedy the concern by eliminating the problems encountered by builders and manufacturers, while at the same time, eliminate the misperception of a shallow end being the deep end based on the assumption that a ladder signifies the deep end.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction, rather, if it is not adopted there is a good chance the cost of construction would increase if it were determined that the existing molds builders and manufacturers use are no longer allowed to meet this requirement.
2015 International Swimming Pool and Spa Code

Revise as follows:

809.3 Secondary entries and exits. Where water depth in the deep area of a pool exceeds 5 feet (1524 mm), a means of entry and exit shall be provided in the deep area of the pool.

 Exception: Where a means of exit from the deep end of a pool would present a potential hazard, handholds shall be provided for the means of exit.

Reason: Since the APSP-5 2011 standard was published, several calls have been received from builders and fiberglass pool manufacturers expressing concern that the language in Section 6.1 of APSP-5 is creating problems both in construction and for fiberglass pool manufacturers with existing molds. According to the language in the 2011 edition of APSP-5, these existing molds can no longer be used. The existing language has been modified to help clarify and remedy this section. Hopefully, it will eliminate the problems encountered by builders and manufacturers, while at the same time, eliminate the misperception of a shallow end being the deep end based on the assumption that a ladder signifies the deep end.

This proposal is submitted by the ICC Plumbing, Mechanical and Fuel Gas Code Action Committee (PMGCAC). The PMGCAC was established by the ICC Board of Directors to pursue opportunities to improve and enhance assigned International Codes or portions thereof. This includes both the technical aspects of the codes and the code content in terms of scope and application of referenced standards. The PMGCAC has held one open meeting and multiple conference calls which included members of the PMGCAC. Interested parties also participated in all conference calls to discuss and debate the proposed changes. This is PMGCAC Item 9.

Cost Impact: Will not increase the cost of construction

This proposal will not increase the cost of construction because additional labor, materials, equipment, appliances or devices are mandated beyond what is currently required by the code.
2015 International Swimming Pool and Spa Code

Revise as follows:

809.5.1 Tread dimension and area. Treads shall have a minimum unobstructed horizontal depth of 10 inches (254 mm) and a minimum unobstructed walking surface area of 240 square inches (0.15 m\(^2\)).

809.5.2 Riser heights. Risers, other than the top and bottom riser, shall have a uniform height of not greater than 12 inches (305 mm). The top riser height shall be any dimension not exceeding 12 inches (305 mm) for the width of the walking surface. The bottom riser height shall be any dimension not exceeding 12 inches (305 mm). The top and bottom riser heights shall not be required to be equal to each other or equal to the uniform riser height. Riser heights shall be measured at the horizontal centerline of the walking surface area.

Reason: The rationale for the changes being proposed is that when entry steps are installed on the side of a pool, they may extend in width to a point where the walking surface area may not be the "center" of the tread width. This proposal is consistent with the requirements found in the ANSI/APSP/ICC - 5 American National Standard for Residential Inground Swimming Pools, specifically this can be found within the subsections to 6.2 of APSP-5.

Bibliography: Refer to ANSI/APSP/ICC - 5 Residential Inground Swimming Pool Standard

Cost Impact: Will not increase the cost of construction.

This proposal clarifies current practice and will not increase the cost of construction.